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Abstract

Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-

WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering

problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of

the Ffowcs Williams–Hawkings (FW–H) equation. This formulation has a form involving the observer time differentiation

outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This

formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more

efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with

available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact

solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical

approach is compared with the analytical formulations. The agreement between the analytical formulations and the

numerical method is excellent for both stationary and moving observer cases.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic scattering of the noise generated by rotating blades is an area of research that is not well
developed. For example, a helicopter fuselage, a tiltrotor wing, or the duct surrounding a fan, each may
substantially modify the acoustic signal that arrives at an arbitrary observer location. Such a modification
would change both the magnitude and directivity of the acoustic signal from what would be observed for an
isolated rotor. The effect of a fuselage on the noise field generated by a rotating point source was
demonstrated by Atalla and Glegg [1,2] using a ray-acoustics approach. Laik and Morris [3] showed a direct
simulation of acoustic scattering by two- and three-dimensional bodies using an extension of the impedance
mismatch method.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Tools exist for predicting fan noise scattering in turbofan engines, but only limited work has been done on
the acoustic scattering of rotor noise by short ducts (i.e., ducted tail rotors, ducted propellers for compound
rotorcraft, ducted fans in UAVs, etc.) The various numerical approaches [4–6] to solve the acoustic scattering
problem use the acoustic velocity on a scattering surface as a boundary condition. For example, a rigid
surface requires either the satisfaction of the impenetrability condition on the surface or zero normal acoustic
velocity relative to the scattering surface. Most conventional acoustic codes compute acoustic pressure at an
observer, not the acoustic velocity, but the gradient of the acoustic pressure is related to the acoustic velocity
through the linearized momentum equation. As result, the boundary condition for the stationary scattering
surface can be written as rp0s � n ¼ �rp0i � n, where p0i is the incident acoustic pressure and p0s is the scattered
pressure. The calculation of the acoustic pressure gradient is, therefore, a key aspect in solving acoustic
scattering problems. A numerical evaluation of the pressure gradient, which requires evaluation of the spatial
derivative of acoustic pressure with respect to each direction, is the simplest way to calculate the pressure
gradient on the surface. Nevertheless, it is computationally expensive. Therefore, it is not practical to calculate
the pressure gradient numerically for a realistic helicopter configuration, where the scattering computation
may require the acoustic pressure gradient at thousands or even tens of thousands of collocation points on the
scattering surface. Furthermore, for the complicated source (rotating blades) and scattering surfaces (complete
helicopter configuration), it is not easy to obtain the pressure gradient numerically. Therefore, it is important
to develop an analytical formulation for the pressure gradient to enable routine acoustic scattering
predictions.
2. Research objective

The Ffowcs Williams–Hawking (FW–H) equation [7] is a powerful tool to solve acoustic propagation from
arbitrary moving sources such as rotating blades. In this paper, analytic formulations for the pressure gradient
are derived starting with the FW–H equation for general moving sources and eventually applied to rotor
noise.

The analytical formulations have several distinct advantages in terms of numerical computation. First, no
additional input data are needed to predict the acoustic pressure gradient beyond what is already required to
predict acoustic pressure (or at most, numerical differentiation of the input data). Second, the retarded time
algorithms that will be used have been refined and thoroughly tested in various numerical implementations of
formulation 1A, which is a retarded-time integral representation of the solution of the FW–H equation.
Finally, by computing the acoustic pressure gradient analytically, rather than using a purely numerical
approach, significant computation savings (in terms of computer run time and memory) and increased
robustness are expected. Furthermore, the computation of the acoustic pressure from the isolated rotor can be
computed concurrently with the acoustic pressure gradient.

The goals of this paper are as follows:
1.
 Develop a computationally efficient analytical formulation for the acoustic pressure gradient to provide
accurate input data for the boundary condition for the scattering problems.
2.
 Validate the formulation by comparison with available exact solutions.

3.
 Apply the formulation to the rotor noise cases.
3. Acoustic pressure gradient formulations

The PSU-WOPWOP rotor noise prediction code [8–10] is used in this work to predict the rotor
noise (acoustic pressure), as well as the gradient of the acoustic pressure on the scattering body. The
PSU-WOPWOP code is based on Farassat’s formulation 1A [11,12]. A brief review is given in the
next section.
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3.1. Formulation 1A

Farassat’s formulation 1A [11,12] is an integral representation of the solution to the FW–H equation,
without the quadrupole source term. It is a retarded-time formulation, which can be written as

p0ðx; tÞ ¼ p0T ðx; tÞ þ p0Lðx; tÞ, (1)

where p0, p0T , and p0L denote the acoustic pressure, the monopole source, and the dipole source. When the
acoustic data surface coincides to the actual impenetrable surface, the last two terms become the thickness
and loading components of the acoustic pressure, respectively. The monopole noise contribution p0T can be
written as

4pp0T ðx; tÞ ¼

Z
f¼0

r0ð _Un þU _nÞ

rð1�MrÞ
2

� �
ret

dS þ

Z
f¼0

r0Unðr _Mr þ cðMr �M2ÞÞ

r2ð1�MrÞ
3

� �
ret

dS, (2)

while the dipole noise contribution p0L is written as

4pp0Lðx; tÞ ¼
1

c

Z
f¼0

_Lr

rð1�MrÞ
2

� �
ret

dS þ

Z
f¼0

Lr � LM

r2ð1�MrÞ
2

� �
ret

dS

þ
1

c

Z
f¼0

Lrðr _Mr þ cðMr �M2ÞÞ

r2ð1�MrÞ
3

� �
ret

dS, (3)

where ðx; tÞ and ðy; tÞ are the observer and source space–time variables, respectively, r ¼ jx� yj and c is the
speed of sound in the undisturbed medium. The data surface is described implicitly by the equation f ðy; tÞ ¼ 0,
where f ðy; tÞ is defined in such a way that rf ¼ n̂, which is the unit outward normal to the data surface with
components ni. The density of the undisturbed medium is r0. In Eqs. (2) and (3) the subscripts r; n and M

imply the dot product of the vector with either the unit vector in the radiation direction r̂, outward normal
vector n̂ to the surface f ¼ 0, or the surface Mach number M, respectively. The dot over a variable indicates
source time differentiation. The variables Ui and Li are defined by

Ui ¼ ½1� ðr=r0Þ�vi þ ðrui=r0Þ, (4)

Li ¼ Pijn̂j þ ruiðun � vnÞ, (5)

where ui are the components of the local flow velocity vector and vi are the components of the local blade
surface velocity vector and Pij is the compressive stress tensor. Eqs. (4) and (5) are the form used for a
permeable surface, which is useful if the flow field around the rotor blades becomes transonic—as is the case
for high-speed-impulsive noise. Eqs. (1)–(3) omit the quadrupole term in the FW–H equation, so all significant
nonlinear sources should be contained within a permeable surface. This enables the inclusion of the
contribution of those sources without carrying out a volume integration. For an impermeable surface, such as
the actual blade surface, Ui ¼ vi and Li ¼ Pijn̂j .

3.2. Formulation G1

Taking the gradient of Eqs. (2) and (3) directly involves complicated algebraic manipulations. It is easier to
start with the partial differential equation form of the FW–H equation and then use the free-space Green’s
function to derive the new integral formulation. Details of this approach can be found in Ref. [13]. In this
paper, the formulation is revisited with slightly different notation.

The acoustic pressure gradient can be found by taking the gradient of the FW–H monopole and dipole noise
terms (neglecting the quadrupole source). The gradient of Eq. (1) is

rp0 ¼ rp0T þrp0L. (6)
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The next step is to find the acoustic pressure gradient of the monopole and dipole noise sources. The governing
equation for the monopole noise is

&2p0T ¼
q
qt
½roUndðf Þ�, (7)

where dðf Þ is the Dirac delta function with support on the data surface f ¼ 0. Using the free-space Green’s
function dðgÞ=4pr, where g ¼ t� tþ r=c, the monopole component of pressure can be expressed as

4pp0T ðx; tÞ ¼
q
qt

Z t

�1

Z 1
�1

r0Un

r
dðf ÞdðgÞdydt. (8)

Taking the gradient of Eq. (8) yields

4prp0T ðx; tÞ ¼ r
q
qt

Z t

�1

Z 1
�1

r0Un

r
dðf ÞdðgÞdy dt

¼
q
qt

Z t

�1

Z 1
�1

r0Undðf Þrx

dðgÞ
r

� �
dydt, (9)

where the symbol rx stands for gradient operator with respect to the observer variable x. The spatial gradient
operator can replaced by a time derivative using the relation

rx

dðgÞ
r

� �
¼ �

1

c

q
qt

r̂dðgÞ
r

� �
�

r̂dðgÞ
r2

. (10)

Combining Eqs. (9) and (10) yields

4prp0T ðx; tÞ ¼ �
q
qt

1

c

q
qt

Z t

�1

Z 1
�1

r̂r0Un

r
dðf ÞdðgÞdydtþ

Z t

�1

Z 1
�1

r̂r0Un

r2
dðf ÞdðgÞdydt

� �
. (11)

Using generalized function theory and geometry [14–16]—and following the same steps Farassat used in
deriving formulation 1A—the gradient of the monopole component of the acoustic pressure is found to be

4prp0T ðx; tÞ ¼ �
q
qt

1

c

q
qt

Z
f¼0

r̂r0Un

rð1�MrÞ

� �
ret

dS þ

Z
f¼0

r̂r0Un

r2ð1�MrÞ

� �
ret

dS

� �
¼ �

qE1

qt
. (12)

By recalling that

q
qt
½. . .� x ¼

1

1�Mr

q
qt
½. . .�

� ����
x

����
�
ret

(13)

and

qr̂
qt
¼

c

r
ðMrr̂�MÞ, (14)

it can be easily shown that

E1 ¼
1

c

Z
f¼0

½r̂ET �ret dS þ

Z
f¼0

ðr̂�MÞr0Un

r2ð1�MrÞ
2

� �
ret

dS, (15)

where

ET ¼
r0ð _Un þU _nÞ

rð1�MrÞ
2

� �
ret

þ
r0Unðr _Mr þ cðMr �M2Þ

r2ð1�MrÞ
3

� �
ret

(16)
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is the combined monopole noise integrand in formulation 1A. Hence, it is already available in the noise
prediction code. Finally, the monopole component of the acoustic pressure gradient can be written as

4prp0T ðx; tÞ ¼ �
q
qt

1

c

Z
f¼0

r̂ET½ �ret dS þ

Z
f¼0

ðr�MÞr0Un

r2ð1�MrÞ
2

� �
ret

dS

( )
. (17)

The observer time derivative of the two integrals can be determined numerically.
The derivation of the gradient of the dipole noise component of the acoustic pressure follows the same

procedure as used in the monopole noise component. The governing equation for the dipole noise is written as

&2p0L ¼ �r � ½Ldðf Þ�, (18)

thus the dipole component of acoustic pressure is

4pp0Lðx; tÞ ¼ �r �

Z t

�1

Z 1
�1

L

r
dðf ÞdðgÞdydt ¼ �

Z t

�1

Z 1
�1

dðf ÞL � rx

dðgÞ
r

dy dt
� �

. (19)

Using Eq. (10) in the previous integral yields

4pp0Lðx; tÞ ¼
1

c

q
qt

Z t

�1

Z 1
�1

Lr

r
dðf ÞdðgÞdydtþ

Z t

�1

Z 1
�1

Lr

r2
dðf ÞdðgÞdydt. (20)

Then if the gradient of the dipole component of acoustic pressure is taken, the result is

4prp0Lðx; tÞ ¼
1

c

q
qt

Z t

�1

Z 1
�1

dðf ÞL � rx

r̂dðgÞ
r

� �
dydtþ

Z t

�1

Z 1
�1

dðf ÞL � rx

r̂dðgÞ
r2

� �
dydt. (21)

Note that the observer and the source space–time variables are independent because none of the Dirac delta
functions have been used yet in the integration. This approach makes it easy to interpret the differential
operators. Had the integrated results been used, heavy algebraic manipulations would be needed and the
differential operators would require careful interpretation.

Using the following relations

L � rx

r̂dðgÞ
r

� �
¼ L � rx

r̂

r

� �
dðgÞ þ

Lrr̂

cr
d0ðgÞ ¼

L� 2Lrr̂

r2
dðgÞ �

Lrr̂

cr

q
qt

dðgÞ, (22)

L � rx

r̂dðgÞ
r2

� �
¼ L � rx

r̂

r2

� �
dðgÞ þ

Lrr̂

cr2
d0ðgÞ ¼

L� 3Lrr̂

r3
dðgÞ �

Lrr̂

cr2
q
qt

dðgÞ, (23)

leads to

4prp0Lðx; tÞ ¼
1

c

q
qt
�
1

c

q
qt

Z t

�1

Z 1
�1

Lrr̂

r
dðf ÞdðgÞdydtþ

Z t

�1

Z 1
�1

ðL� 3Lrr̂Þ

r2
dðf ÞdðgÞdydt

� �

þ

Z t

�1

Z 1
�1

ðL� 3Lrr̂Þ

r3
dðf ÞdðgÞdydt. (24)

Again following the procedure used for formulation 1A, Eq. (24) can be rewritten as

4prp0Lðx; tÞ ¼
1

c

q
qt
�
1

c

Z
f¼0

1

1�Mr

q
qt

Lrr̂

rð1�MrÞ

� �� �
ret

dS

�

þ

Z
f¼0

L� 3Lrr̂

r2ð1�MrÞ

� �
ret

dS

�
þ

Z
f¼0

L� 3Lrr̂

r3ð1�MrÞ

� �
ret

dS. (25)
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Simplifying Eq. (25) gives the gradient of the dipole noise component of the acoustic pressure

4prp0Lðx; tÞ ¼
1

c

q
qt
�

Z
f¼0

r̂EL½ �ret dS þ

Z
f¼0

L� Lrr̂

r2ð1�MrÞ

� �
ret

dS

�

�

Z
f¼0

Lrr̂� LrM

r2ð1�MrÞ
2

� �
ret

dS

)
þ

Z
f¼0

L� 3Lrr̂

r3ð1�MrÞ

� �
ret

dS, (26)

where EL is the combined dipole noise integrand in formulation 1A

EL ¼
1

c

_Lr

rð1�MrÞ
2

� �
ret

þ
Lr � LM

r2ð1�MrÞ
2

� �
ret

þ
1

c

Lrðr _Mr þ cðMr �M2ÞÞ

r2ð1�MrÞ
3

� �
ret

. (27)

Again, the observer time derivative in Eq. (26) needs to be taken numerically.
For convenience, Eqs. (17) and (26) are together referred to as formulation G1. This notation parallels that

used by Farassat for the monopole and dipole formulation 1, which had a observer time derivative outside of
the integrals. Evaluation of the pressure gradient can now be completed with substantially less computational
effort than a direct numerical evaluation of the pressure gradient.

Eqs. (17) and (26) have been implemented in the PSU-WOPWOP noise prediction code to provide the
acoustic pressure gradient at an arbitrary observer location. The main challenge of this implementation is the
calculation of observer time derivative, q=qt, of the integrals. Care must be taken to ensure that the observer
position x remains fixed during the calculation of these integrals. To simplify the algorithm description, the
integrals which must be differentiated, surrounded by the braces in Eq. (26), are represented by Q. A second-
order backward difference algorithm is used to compute the time derivative. The general algorithm for the
numerical calculation of q=qt is as follows:
A.
 Pick tn—n indicates time step and t represents the emission or retarded time.

B.
 Compute yiðt

nÞ—each source point is moving, thus at time n, the position of the i-th source point is needed.

C.
 Save tn, yi t

nð Þ, velocity, acceleration, etc. for later use as the tn�1 and tn�2 values once n has been
incremented.
D.
 Compute xðtnÞ (based on yiðt
nÞ and tn)—if x does not change (i.e., a stationary observer) , then the arrival

time t is found explicitly by t ¼ tþ r=c; if the observer is moving, both the observer position and arrival
(observer) time must be determined implicitly at the same time.
E.
 Calculate Qðyi; t
n; xðtnÞ; tn

xnÞ � Qn
n using velocity, acceleration, etc. at tn.
F.
 Compute tn�1
xn and tn�2

xn using tn�1 and tn�2 as follows:
(i) tn�1

xn ¼ tn�1 þ jxðtnÞ � yiðt
n�1Þj=c,

(ii) tn�2
n ¼ tn�2 þ jxðtnÞ � y ðtn�2Þj=c.
x i
(If x is stationary, the calculation is simpler.)

G.
 Calculate Qðyn�1

i ; tn�1; xðtnÞ; tn�1
xn Þ � Qn�1

n and Qðyn�2
i ; tn�2; xðtnÞ; tn�2

xn Þ � Qn�2
n .
H.
 Calculate

qQ

qt
ffi

Qn�2
n � ð1þ aÞ2Qn�1

n þ aðaþ 2ÞQn
n

að1þ aÞðtn
n � tn�1

n Þ
where a ¼

tn�1
n � tn�2

n

tn
n � tn�1

n

for a non-uniform time step.

I.
 Interpolate qQ=qt at tn,
where t denotes source time, t observer time, yi source vector, xi observer vector, c speed of sound, n time
index and t� is the specified observer time of interest. It is apparent that this procedure is significantly more
complicated than computing the acoustic pressure. Nevertheless, the additional computational effort will be
shown to be significantly less than a purely numerical differentiation of the acoustic pressure.
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3.3. Formulation G1A

The primary drawback of formulation G1 is that numerical time differentiation of the integrals is required.
If the observer is stationary, then this requirement is not a problem because the time history of the integrals
can be easily differentiated numerically. If the observer is moving with respect to the fluid, as in the case of a
wind-tunnel test, the situation becomes more complicated because the formulation requires the observer to be
stationary during the evaluation of the integrals. Predictions with a moving observer are possible by adjusting
the observer position at each time in the acoustic-pressure time history; however, three evaluation of the
integrals are needed to perform a second-order difference approximation to the time derivatives at each
observer time. These extra integral evaluations become unnecessary if the time derivatives are taken inside the
integrals analytically.

Although the process of taking the observer time derivatives inside the integrals and converting them to
source time derivatives is not difficult, it is quite tedious. The first step is to apply Eq. (13) and then evaluate
the source time derivatives that results. Some of the key source time derivatives, which are the same as
Farassat used in the derivation of formulation 1A, are expressed as follows:

qr̂
qt
¼

c

r
ðMrr̂�MÞ, (28)

qr

qt
¼ �cMr, (29)

q
qt

1

r

� �
¼ �

1

r2
qr

qt
¼

cMr

r2
, (30)

qMr

qt
¼

c

r
ð�M2 þM2

r Þ þ
_Mr, (31)

qLr

qt
¼ _Lr þ

c

r
ðMrLr � LM Þ. (32)

Some new functions are introduced denoted by the following groups of variables:

W ¼ r _Mr þ cðMr �M2Þ, (33)

_W ¼
r2 €Mr � 3cr _M �Mþ cðr _Mr þ cðM2

r �M2ÞÞ

r
, (34)

Uðm; nÞ ¼
1

rmð1�MrÞ
n , (35)

V ðm; nÞ ¼
qUðm; nÞ

qt
¼

nr _Mr þ ðn�mÞcM2
r þmcMr � ncM2

rmþ1ð1�MrÞ
nþ1

, (36)

or

V ðm; nÞ ¼ nWUðmþ 1; nþ 1Þ þ cðm� nÞMrUðmþ 1; nÞ. (37)

These relations will be used in the process of taking the observer time derivatives inside the integrals in
formulation G1.

Eqs. (17) and (26) are the starting point for the derivation of formulation G1A. Converting the observer
time derivative to a source time derivative and using the new variables represented by Eqs. (34) and (35),
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Eqs. (17) and (26) become

4prp0T ðx; tÞ ¼ �
1

c

Z
f¼0

1

1�Mr

q
qt
fr̂ð _QUð1; 2Þ þQWU ð2; 3ÞÞg

� �
ret

dS

�

Z
f¼0

1

1�Mr

q
qt
fðr̂�MÞQUð2; 2Þg

� �
ret

dS, (38)

4prp0Lðx; tÞ ¼ �
1

c

Z
f¼0

1

1�Mr

q
qt

r̂
1

c
_LrUð1; 2Þ þ ðLr � LMÞUð2; 2Þ þ

Lr

c
WUð2; 3Þ

� �� �� �
ret

dS

þ
1

c

Z
f¼0

1

1�Mr

q
qt
fðL� Lrr̂ÞUð2; 1Þg

� �
ret

dS

�
1

c

Z
f¼0

1

1�Mr

q
qt
fLrðr̂�MÞUð2; 2Þg

� �
ret

dS

þ

Z
f¼0

½ðL� 3Lrr̂ÞUð3; 1Þ�ret dS, (39)

where r0Un is defined as Q.
Eqs. (38) and (39) can be written in a short hand notation for convenience

4prp0T ðx; tÞ ¼ I1 þ I2, (40)

4prp0Lðx; tÞ ¼ I3 þ I4 þ I5 þ I6, (41)

where I1–I6 correspond to each of the integrals in Eqs. (38) and (39). Detailed forms of I1–I6 after performing
the differentiation of variables with respect to the source time are given in Appendix A.

Eqs. (40) and (41), together with the definitions of I1—I6, will be referred to as formulation G1A and are
the main result of this paper. The designation G1A is intended to parallel that of Farassat’s formulation 1A, in
which the observer time derivative is taken analytically inside the monopole and dipole integrals. Formulation
G1A does not require numerical time differentiation of the integrals, and, as a retarded-time formulation, is
well suited for subsonic source motion. Aside from the problem geometry, only the time-dependent input
values or at most, numerical differentiation of them are required. Furthermore, it will be demonstrated with
numerical examples that formulation G1A requires significantly less operations and computer memory than
formulation G1. This will be discussed in detail later. The reduction of computational cost is important when
the formulation is used for the scattering problem.

It is worthwhile to point out possible numerical error sources in the developed analytical formulations.
Numerical errors can be associated with insufficient temporal and spatial resolution of the source and a numerical
evaluation of integrals. An error analysis will be carried out in the following section. Other than these error
sources, no other numerical errors associated with wave propagation, such as dissipation or dispersion errors that
are important issues in computational fluid dynamics (CFD), are involved in the formulations because the solution
obtained using the free-space Green’s function is exact at the far field under the assumption of linear superposition.

4. Validation of the analytic formulations of the pressure gradient

The developed analytic formulations will be validated by comparison with exact solutions of the pressure
gradient for both stationary and moving monopole sources. In the case of a moving source, both a stationary
source in a moving stream and a moving source in a stationary stream will be considered.

4.1. Validation case 1: a stationary source

The first validation case is a stationary point monopole source problem. The three-dimensional
inhomogeneous wave equation is given by

&2p0ðx; tÞ ¼ qðx; tÞ. (42)
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A source which is concentrated at a point is given as

qðx; tÞ ¼ QðtÞdðxÞ. (43)

For a point monopole source with a single frequency o, the source is given by

qðx; tÞ ¼ AeiotdðxÞ, (44)

where A is a complex constant.
The three-dimensional Green’s function gives the solution of the acoustic pressure for a point monopole

source located at the origin:

p0ðr; tÞ ¼
Qðt� r=cÞ

4pr
¼

Aeioðt�r=cÞ

4pr
, (45)

where r ¼ jx� yj and t� r=c is called the retarded time.
Once the pressure is determined, the particle velocity can be calculated from it using the linearized

momentum equation. The radial component of the equation gives

r0
qur

qt
¼ �

qp0

qr
. (46)

The pressure gradient in the r direction is given by

qp0

qr
¼ �

A

4p
io
cr
þ

1

r2

� �
eioðt�r=cÞ. (47)

Substituting Eq. (47) into Eq. (46) gives

urðr; tÞ ¼
A

4pðiwr0Þ
io
cr
þ

1

r2

� �
eioðt�r=cÞ. (48)

Eqs. (45) and (47) give the exact solutions of acoustic pressure and pressure gradient at an observer point. In
order to validate the pressure gradient formulations implemented in PSU-WOPWOP, a permeable data
surface enclosing the point source is used. Eqs. (45) and (48) yield the variables Ui and Li on the surface. In the
prediction, A ¼ 4p is used.

The spherical permeable surface used has a radius of 0.5m and the polar azimuthal angle y and polar angle
f are discretized into 36 and 18 panels, respectively.

Fig. 1 shows a comparison of the acoustic pressure at r ¼ 10m for the exact solution and prediction. Source
frequency is o ¼ 10 rad=s. The predicted result agrees very well with the exact solution. The order of the error
for the peak value is less than 1%. This result demonstrates that the permeable surface prediction is correct.

Fig. 2 shows a comparison of the acoustic pressure gradient for the exact solution, the predictions with
formulations G1 and G1A and the finite difference method. It can be seen the predictions match extremely
well with the exact solution so that each line can barely be differentiated on this graph. This result confirms
that the analytical formulations of the pressure gradient can be used to accurately compute the pressure
gradient for a stationary source case.

Although we demonstrated that the analytical formulations are very successful, numerical error associated
with the grid resolution of the source needs to be addressed. Fig. 3 shows the pressure gradient prediction for
the stationary case depending on the mesh points on the permeable surface. Three test cases were used for the
grid convergence test: 36� 18 mesh points, 18� 9 mesh points, 9� 4 mesh points. It was found that the
numerical error caused by the coarse grid resolution reduced the amplitude of the peaks.
4.2. Validation case 2: wind-tunnel case

The second validation problem is a ‘‘wind-tunnel case’’, where the source is stationary, but the flow is
moving with a constant velocity of U. This test case is for the validation of the pressure gradient formulations
in a moving source case.
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The acoustic velocity potential for a stationary source in a uniform stream is written as

1

c2
D2

Dt2
�r2

� �
f0ðx; tÞ ¼ 0, (49)

where D=Dt is the material (or total) derivative operator and f0ðx; tÞ is the velocity potential. The source and
observer are stationary in a uniformly moving stream with a Mach number M ¼ U0=c.
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The Green’s function for the convective wave equation for a harmonic source gives the solution for the
velocity potential. It is given by

f0ðx; tÞ ¼
Ab2

4pR̄
expfik½R̄�Mb2ðx� xsÞ�g expf�otg, (50)

where

R̄ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðx� xsÞ

2
þ ðy� ysÞ

2
þ ðz� zsÞ

2
q

, (51)

and, b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

. The retarded time is given by

t� ¼ t�
R

cð1�MÞ2
M cosYþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2sin2Y

p
 �
, (52)

where R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ

2
þ ðy� ysÞ

2
þ ðz� zsÞ

2
q

and cosY ¼ ðx� xsÞ=R.
The acoustic particle velocity can be obtained by the gradient of the velocity potential

v0ðx; tÞ ¼ rf0ðx; tÞ. (53)

The acoustic pressure is described by the unsteady Bernoulli equation

p0ðx; tÞ ¼ r0 io�U0
q
qx

� �
f0ðx; tÞ. (54)

The exact solution for the acoustic pressure gradient with respect to the x; y and z coordinates is given by

qp0

qx
¼ r0 io

qf0

qx
�U0

q2f0

qx2

� �
, (55)

qp0

qy
¼ r0 io

qf0

qy
�U0

q2f0

qx qy

� �
, (56)
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qp0

qz
¼ r0 io

qf0

qz
�U0

q2f0

qx qz

� �
. (57)

Terms that are necessary for calculating the pressure gradient are provided in Appendix B.
The procedure of making the pressure gradient predictions is similar to that used for the stationary point

monopole source. A spherical permeable surface enclosing a point source is created and flow passes by the
surface with Mach number M. The pressure and velocity evaluated on the surface are passed to PSU-
WOPWOP and used for the prediction of the pressure gradient. Again, A ¼ 4p is used in this problem.

Fig. 4 shows a comparison of the acoustic pressure at a point observer of ð100:0; 0:0;�5:0Þ for the prediction
and the exact solution for Mach number M ¼ 0:5 and 0.9 cases. The source frequency is o ¼ 10 rad=s. The
agreement between the FW–H prediction and the exact solution is excellent for both low and high Mach
number cases. The order of the error for the peak is less than 1% for both cases.

Fig. 5 shows a comparison of the acoustic pressure gradient for the exact solution, the predictions with
formulations G1 and G1A and the finite difference method. It can be seen the predictions match extremely
well, such that the exact solution so that each line can barely be distinguished on this graph. In addition to
validate the methodology, the result implies that the finite difference method, which is a purely numerical
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method, can be used as a baseline for the validation of the pressure gradient formulations when the source
motion is not linear and the exact solution for the pressure gradient is not available.

4.3. Validation case 3: a uniformly moving source

Now let us consider a monopole source with a strength of q moving uniformly in the x-direction with a
velocity U in a stationary fluid. The wave equation for the acoustic pressure field generated by this moving
point source is of the form

&2p0ðx; tÞ ¼
q
qt

qðtÞdðx�UtÞdðyÞdðzÞ, (58)

where qðtÞ ¼ Aeiot. The linearized unsteady Bernoulli equation is given by

p0ðx; tÞ ¼ �r0
qf0

qt
, (59)

where f0 is the velocity potential. Defining c0 ¼ �r0f
0, one obtains

&2c0ðx; tÞ ¼ qðtÞdðx�UtÞdðyÞdðzÞ. (60)

This equation can be solved in many different ways. Many researchers used a linear transformation of
coordinates analogous to a Lorentz transformation. This is given in Ref. [17] in detail. This transformation
enables the reduction of the problem to that of radiation from a stationary source, but it involves complicated
mathematical manipulations. In the present work, the solution of Eq. (60) is more easily derived by using
Farassat’s formulation 1A for the integral solution of the FW–H equation.

Using the free-space Green’s function and the properties of the d function, the solution of Eq. (60) becomes

c0ðx; tÞ ¼
qðtÞ

4prð1�MrÞ

����
ret

, (61)

where qðtÞ ¼ A expðiotÞ.
The pressure can be written as

p0 ¼
qc0

qt
¼

1

1�Mr

q
qt

qðtÞ
4prð1�MrÞ

� �
ret

¼
_qðtÞ

4prð1�MrÞ
2

� �
ret

þ
qðtÞðcMr � cM2Þ

4pr2ð1�MrÞ
3

� �
ret

. (62)

Eq. (62) is equivalent to the monopole noise term of Farassat’s formulation 1A for a moving source with a
constant velocity. The particle velocity is given by the gradient of the velocity potential

v0ðx; tÞ ¼ rf0ðx; tÞ ¼ �
rc0ðx; tÞ

r0
, (63)

where

rc0 ¼
AioqðtÞrt
4prð1�MrÞ

� �
ret

þ qðtÞr
A

4prð1�MrÞ

� �
ret

� �
. (64)

The second part of Eq. (64) needs to be evaluated very carefully. It should be noted that

r
A

4prð1�MrÞ

� �
ret

� �
a r

A

4prð1�MrÞ

� �� �
ret

. (65)

Here the left-hand side means that the gradient operator is applied after the evaluation of the function
at the retarded time. In contrast, the right-hand side of Eq. (65) is carried out before the retarded time is
determined. This gives a wrong answer. To avoid making this mistake, it is useful to preform the gradient
operation before the retarded-time relation is applied (i.e., before the dðgÞ term in the free-space
Green’s function is integrated). For this case of a uniformly moving source, it is useful to express
the denominator of Eq. (65) in terms of the observer position, initial source position, and the velocity



ARTICLE IN PRESS
S. Lee et al. / Journal of Sound and Vibration 319 (2009) 1200–1221 1213
of the source. In this form, one obtains

rð1�MrÞ ¼ cðt� tÞ �Mðx1 �UtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ

2
þ ð1�M2Þfðy� ysÞ

2
þ ðz� zsÞ

2
g

q
, (66)

where x; y and z are the observer coordinates and xs; ys and zs are the initial source coordinates. Now the
problem is given in only x and t variables and the explicit dependence on source space–time is eliminated. Now
the second part of Eq. (64) becomes

qðtÞr
1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ

2
þ ð1�M2Þfðy� ysÞ

2
þ ðz� zsÞ

2
g

q
8><
>:

9>=
>;
�������
t

. (67)

Once the exact solutions for the pressure and particle velocity are determined, these data on the permeable
surface are used to evaluate formulations G1 and G1A in PSU-WOPWOP. The same permeable surface used
with the previous validation cases is used here and A ¼ �4r0p is used to match the strength of the monopole
source with that for the wind-tunnel case.

Fig. 6 shows a comparison of the acoustic pressure at an observer located ð100:0; 0:0;�5:0Þ for both the
prediction and the exact solution for Mach number M ¼ 0:5 and 0.9 cases. The agreement between the FW–H
prediction and the exact solution is excellent for both low and high Mach number cases. Again, the order of
the error for the peak is less than 1%.

Fig. 7 shows a comparison of the acoustic pressure gradient for the exact solution, the predictions with
formulations G1 and G1A and the finite difference method. The derivation of the exact solution for the
pressure gradient for a moving source case requires heavy algebraic manipulations so the exact solution
obtained from the validation case 2 (the moving stream case) is used since both approaches give identical
results. The predictions are again in excellent agreement with the exact solution.

These results demonstrate that the pressure and pressure gradient obtained from a stationary source in a
moving stream are identical with those predicted by a moving source in stationary fluid. The validation for a
moving source is complete.

Fig. 8 shows the instantaneous pressure contour for a source wavelength l ¼ 2m and M ¼ 0:5. The source
is moving in the �x direction. The Doppler effect of changing wavelength can be seen in the figure. Figs. 9–11
show contours of the pressure gradient. The contours of pressure gradient tend to lean toward the direction of
the source motion.

5. Application of the analytic formulations of the pressure gradient to rotor noise

In this section, two representative calculations are performed to demonstrate the capability of the new
formulations and to provide some indication of the efficiency and robustness of the formulations. The first
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case considers a model-scale UH-1H rotor with untwisted blades operating in a non-lifting hover condition.
This test enables simple and fast calculation for both the pressure and pressure gradient. The other test case is
for the HART-I model rotor in a forward descent flight, which experiences blade–vortex interaction (BVI)
high-frequency loading on the blades (although the CFD solution does not fully capture the BVI). Measured
data are not available for the pressure gradient; therefore, the predicted pressure-gradient time histories using
formulations G1 and G1A must be compared with a purely numerical calculation. The finite difference
predictions are performed by computing the acoustic pressure at several points nearby the observer location
and then using a second-order central finite difference in each of the three spatial directions.

5.1. Test case 1: UH-1H model rotor

A model scale rotor test, conducted by Boxwell et al. [18] in 1978 and later repeated by Purcell [19] in 1988,
has been selected for the validation of the present analysis and code. The rotor was a one-seventh scale model
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of a UH-1H main rotor with straight, untwisted blades. The model rotor had an NACA 0012 airfoil section.
The rotor radius R was 1.045m with a chord of 7.62 cm. The model was run at several high-speed hover
conditions with low thrust. The high-speed hover condition is not of particular interest for the validation of
the pressure gradient; therefore, a tip Mach number of 0.6 is selected for the test case. For the hover noise
calculation, an Euler solution reported by Baeder et al. [20,21] is used as input data. The Euler calculations
were performed on a C-H grid; only the lower half of the grid was used in the CFD calculations by taking
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advantage of the symmetry of the problem. The Euler calculations required approximately 80min of CPU
time on a Cray Y-MP. Details of the Euler calculations can be found in Refs. [20,22].

Comparisons of the pressure gradient are made for an in-plane microphone located 3.09R from the rotor
hub for a stationary observer. Fig. 12 shows the total acoustic pressure and the pressure gradient with respect
to the x, y, and z directions, respectively. The pressure gradient predicted by the two analytical formulations
are compared to that obtained by the finite difference method. The agreement between the analytic
formulations and the finite difference method is excellent for all components of the pressure gradient. A closer
examination reveals that the analytical formulations provide much smoother results as compared to the finite
difference method. The order of the error for the peak is 0.1%.

5.2. Test case 2: HART-I model rotor

The forward-flight capability of the new formulations and code is demonstrated for a four-bladed rotor
representative of the HART-I model-scale test. This case focuses on unsteady blade loading and forward
flight. The OVERFLOW CFD code was used to compute the unsteady flow field around the rotor [23,24].
A C-mesh topology was been used for the grid with a total grid system of 2.4 million points in the near-body
region and 15.0 million points in the off-body region—in the coarse grid case. The turbulence model used the
shear stress transport (SST) [25] k � o by Menter. The rapid dissipation of blade–vortex strength makes the
prediction of blade–vortex interactions with computational fluid dynamics (CFD) difficult. Although the CFD
was not fully able to capture the BVI loading on the blades—and hence the peaks of predicted noise were
considerably underpredicted as shown in Refs. [23,24]—the comparison of the new analytical formulations
for pressure gradient with the finite difference method is still useful to demonstrate its implementation
in PSU-WOPWOP.

As in the UH-1H examples, the finite difference result is compared to that of analytic formulations to
validate the newly developed formulations. For this comparison, the observer is located below the rotor plane
at a downstream position on the retreating side of the rotor. The observer is in motion with the rotor to
simulate a wind-tunnel test. Although the absolute magnitude of the pressure gradient is unknown, confidence
in both the derivation and implementation of the new formulations would be gained if all of the different
methods agree.
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Fig. 13 shows the total acoustic pressure and a comparison of the pressure gradient at a moving observer for
the HART-I rotor. The analytical formulations are in a good agreement with the finite difference method.
Upon closer inspection (not shown), the finite difference result contains a high-frequency ‘‘jitter’’ that is
thought to be of numerical origin. The analytical formulations do not exhibit the same ‘‘jitter.’’ In some other
cases with a moving observer (not shown) it was found that the acoustic pressure gradient predicted by
formulation G1 was sensitive to the method of computing the observer time and position. This has not been
studied extensively as formulation G1A does not suffer in this regard, and also requires less computational
effort.

Table 1 shows a comparison of computational times for formulation 1A (as a reference), formulations G1A
and G1, and the finite difference method. The finite difference method requires 7 times as much time as
formulation 1A but formulation G1A only required 3 times as much computation time as formulation 1A.
Formulation G1 requires approximately 5 times as much computation time as formulation 1A or 60 percent
more computation time than formulation G1A. This demonstrates the significant computational savings of
both of the analytical formulations and the superiority of formulation G1A.

6. Concluding remarks

In this paper, two analytical formulations for the determination of the acoustic pressure gradient have been
developed and validated by comparison with available exact solutions for both stationary and moving point
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Table 1

Comparison of computational time for the HART rotor with permeable surface

Formulation 1A Formulation G1A Formulation G1 Finite difference method

11.5 (s) 31.7 (s) 49.4 (s) 79.0 (s)
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Fig. 13. Acoustic pressure and the components of the acoustic pressure gradient for the HART-I rotor operating in a BVI flight condition.

(a) total acoustic pressure, (b) qp0=qx, (c) qp0=qy, (d) qp0=qz; finite difference method: ——; formulation G1A: ;

formulation G1: .
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monopole sources. It has been demonstrated that the analytical formulations agree very well with the exact
solution for three different cases. The fact that all three approaches give essentially the same results—although
they are quite different in expression and implementation—gives confidence that both the derivation and
implementation have been performed correctly. The formulations are applied to rotor blades for both
hovering and forward-flight conditions. The analytical formulations eliminate numerical oscillations, which
are present in the finite difference method and result in very smooth predictions.

It has been found that formulation G1, which evaluates the observer time differentiation of the integrals, is
a relatively simple formulation but is somewhat more difficult to implement in PSU-WOPWOP due to the
observer time differentiation of the acoustic integrals. Furthermore, in at least one case, it was found to be
sensitive to the choice of numerical algorithm used to find the observer time and location. In contrast,
formulation G1A, which takes the time derivatives inside the integrals, is a somewhat more complicated
formulation. Nevertheless, it yields improved computational efficiency and perhaps robustness by avoiding the
numerical time differentiation of the acoustic integrals. Numerical tests show that formulation G1A is the
fastest and the most efficient algorithm for computing the acoustic pressure gradient. This is important for use
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in calculation of the acoustic scattering, which may require several thousand pressure gradient calculations at
the collocation points on the scattering body.
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Appendix A. Formulation G1A for the analytical pressure gradient

Five final equations of formulation G1A for the analytical pressure gradient are given as follows:

I1 ¼ �
1

c

Z
f¼0

½r̂f €QUð1; 3Þ þ ð3 _QW þQ _W ÞUð2; 4Þ þ 3QW 2Uð3; 5Þg

� cMf _QUð2; 3Þ þQWUð3; 4Þg�ret dS, (A.1)

I2 ¼

Z
f¼0

½ðM� r̂Þ _QUð2; 3Þ þ ð�cMrr̂þ cMþ r _MÞQUð3; 3Þ

þ 2ðM� r̂ÞQWU ð3; 4Þ�ret dS, (A.2)

I3 ¼ �
1

c2

Z
f¼0

½r̂ð €Lr þ _L_rÞUð1; 3Þ

þ cf�M _Lr � ð� _Lr þ _LM þ L _M Þr̂gUð2; 3Þ� þ r̂f3 _LrW þ Lr
_W gUð2; 4Þ

þ c2fð2LrMr � LM ð1þMrÞÞr̂� ðLr � LMÞMgUð3; 3Þ

þ cfðLrðMr þ 2Þ � 3LMÞW r̂� LrWMgUð3; 4Þ þ 3LrW
2r̂Uð3; 5Þ�ret dS, (A.3)

I4 ¼
1

c

Z
f¼0

½ð _L� _Lrr̂ÞUð2; 2Þ � cfð3LrMr � LM Þr̂� LrM�MrLgUð3; 2Þ

þ ðL� Lrr̂ÞWUð3; 3Þ�ret dS, (A.4)

I5 ¼ �
1

c

Z
f¼0

½f _Lrðr̂�MÞ � Lr
_MgUð2; 3Þ

þ cfr̂ð2LrMr � LM Þ �MðMrLr � LM þ LrÞgUð3; 3Þ

þ 2Lrðr̂�MÞWUð3; 4Þ�ret dS, (A.5)

I6 ¼

Z
f¼0

½ðL� 3Lrr̂ÞUð3; 1Þ�ret dS. (A.6)

Recall that for an impermeable surface,

Q ¼ r0vn, (A.7)

L ¼ Pijn̂j, (A.8)

and for a permeable surface,

Q ¼ r0vn þ rðun � vnÞ, (A.9)

L ¼ Pijn̂j þ ruiðun � vnÞ. (A.10)

Also note that a dot on the main variables does not imply differentiation of any of the associated vectors
implied by the subscripts. Subscripts other than i and j are a short hand for the inner product of the main
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quantity with the vector represented by the subscript. The derivative of acceleration, which is called a jerk, and
second derivative of normal unit vector are evaluated numerically in this work.

Appendix B. Exact solution for the pressure gradient for a moving stream case

Terms that are necessary to evaluate the exact solution for the pressure gradient for a moving stream case
are given as follows:

qf0

qx
¼ f0 �

1

R̄

qR̄

qx
þ ik

qR̄

qx
�Mg2

� �� �
, (B.1)

qf0

qy
¼ f0 �

1

R̄

qR̄

qy
þ ik

qR̄

qy

� �
, (B.2)

qf0

qz
¼ f0 �

1

R̄

qR̄

qz
þ ik

qR̄

qz

� �
, (B.3)

q2f0

qx2
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qf0

qx
�

1

R̄

qR̄

qx
þ ik

qR̄

qx
�Mg2

� �� �
þ f0

1

R̄
2

qR̄

qx

� �2

�
1

R̄

q2R̄
qx2
þ ik

q2R̄
qx2

( )
, (B.4)

q2f0

qx qy
¼

qf0

qy
�

1
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qR̄

qx
þ ik

qR̄

qx
�Mg2

� �� �
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1
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2

qR̄
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qR̄
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1
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q2f0

qx qz
¼

qf0

qz
�

1

R̄

qR̄

qx
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qR̄

qx
�Mg2

� �� �
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1
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2
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qx

qR̄
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1
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qx qz
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where

qR̄

qx
¼

g3ðx� xsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðx� xsÞ

2
þ ðy� ysÞ

2
þ ðz� zsÞ

2
q , (B.7)

q2R̄

qx2
¼

g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
þ ðy� ysÞ

2
þ ðz� zsÞ

2
q �

g5ðx� xsÞ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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, (B.8)

q2R̄

qx qy
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2
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2
þ ðz� zsÞ

2
q� �3

, (B.9)

q2R̄

qx qz
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2
þ ðy� ysÞ

2
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